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STEP 3 2013 Hints and Solutions

1. The first two results, whilst not necessarily included in current A2 specifications, are

dx = Zf _r
1+asinx 0 (1-a?)+(t+a)?

standard work. Applying them, fz dt , which can then be

1+a -1 a . . .
NeEy a —m) . To simplify this to

—\/%) must be simplified using the relevant

. . . 2 1
evaluated using a change of variable to give NrEwr (tan

-1

. . -1 1+a
obtain the required result, tan (tan Ny

compound angle formula.

1
It is fairly straightforward to show that I, + 2I,, = foin sin™ x dx , so applying this for n = 2,1,0

and applying the main result of the question to evaluate I , gives I3 = G - ST\F) T—2
2. It is elegant to multiply by the denominator, then differentiate implicitly, and finally multiply

by the same factor again to achieve the desired first result. The general result can be proved by then
using induction, or by Leibnitz, if known. The general result can be used alongside the expression for
v, and the first derived result with the substitution x = 0 to show that the general term of the

221‘(1.!)2
x2r+1

Maclaurin series for even powers of x is zero, and for odd powers of x is G . Thus, as
22 4222 . e . . 2

y=x+ ;x3 + sz + --- the required infinite sum is % with x ==, thatis m/—

3. The scalar product of p; with Y. p, , which is of course zero, can be expanded giving

pi-p; = 1 and three products p;.p; which are equal by symmetry, giving the required result.
Expanding the expression suggested in (i), gives Z?zl(pi.pi — 2x.p; + x.x) , which, bearing in mind
that p;.p; =1, x.x =1, and that x.Y}_; p; = 0, gives the correct result. Considering that

-1 , P2.p2 = 1, and that ais positive, enables the given values to be found. Similarly

3
P1-P3 = —l, DP2-P3 = —%, and p3.p3 =1 yields P;, P, = (—\/—,i§,—§) In (iii), using the

P1.-D2 =

logic of (i), (XP))* = ((pl —x).(p; — x)) = 4(1 — x.p;)?, as required. Expanding this, and using
the coordinates of X and those of P; that have been found,

2

S (P = 16+4(22+(£x_§ .) +(_gx+gy_§z)2+(_ﬁx_%y_§z)2)

=16+ 4( x2+2 y + ) = % which is sufficient.

4, The initial result is obtained by expanding the brackets and expressing the exponentials in
.2m+1
trigonometric form. The (2n)th rootsof -1are e" zn ©, —n < m < n — 1, which lead to the

factors of z?™ + 1 and these paired using the initial result give the required result. Part (i) follows
directly from substituting z = i in the previous result, and as nis even, z?™ + 1 = 2. Using the
given factorisation in part (ii), the general result can be simplified by the factor

. . . 2n-— .
22z cos%n + 1 = z%? + 1. Again substituting z = i , and that cos%n = —cosin gives

the evaluation required.



5. Writing ¢"N as qq™ N , and employing the permitted assumption, as p and q are
coprime, p divides q""1N . Repetitions of this argument imply finally that p divides N . Letting
N =pQ,, q"Q, = p™ 1. Continuing this argument similarly gives the result N = kp™ . Asa
consequence, q"k = 1, and thus q and k must both be 1. Thusif VN =§ where p and g are

coprime, it is rational and can be written in lowest terms, then q"N = p™ and so g = 1 and thus

YN isan integer. Otherwise, YN cannot be written as S, that is, it is irrational.

For (ii), using the same logic as in part (i), as b% divides a®d?, b* divides d?, so
d? = kb?, for some k . Likewise, a® = k'c?, for some integer k', andthus k'k =1,
sok=k'=1,andd? =b%. If p is a prime factor of d, then p divides d? , and so b? too.
Writing b* = bb%™1, using the logic of the very first part of the question, if p does not divide b, p
divides b*~1, and repetition of this argument leads to a contradiction. So p is a prime factor of b .
p™ and p"® is the highest power of p that divides d? = b* . So mb =na,and b = % So p™
divides na, butas a and b are coprime, p™ divides n and thus p™ < n. By the given result, this

means p = 1,andas b isonlydivisibleby 1, b =1. If r is a positive rational %, such that

r’ =§ is rational, then a®d? = b%c? so b = 1and r is a positive integer.

6. The opening result is the triangle inequality applied to OW, OZ, and WZ where OW and OZ
are represented by the complex numbers w and z.

Part (i) reliesonusing |z—w|? = z—w)(z—w)*, (z—-w)* = (z* —w"), |zw| = |z| |w]|, and
substituting wz* + zw* = (E — 2|zw|) . Having obtained the desired equation , the reality of E is
apparent from the reality of the other terms and its non-negativity is obtained from the opening
result of the question. Part (ii) relies on the same principles as part (i).

The inequality can be most easily obtained by squaring it, and substituting for both numerator and
denominator on the left hand side using parts (i) and (ii), and algebraic rearrangement leads to
E(1 —|z|*)(1 — |w|?) = 0 which is certainly true. The argument is fully reversible as |z|] > 1, and
lwl > 1, |zw*| > 1,and so 1 — zw* # 0 so the division is permissible, and the square rooting of
the inequality causes no problem as the quantities are positive. The working follows identically if
|z| <1,and |w| < 1.

dE _ 5 dy (d’y 3) ; ; =1 e
7. As — = 2 o (dxz + y°) iszeroforall x, E(x) is constant, and E(x) = 5 using the

2
initial conditions. The deduction follows from the non-negativity of (Z—i) . In part (ii), it can be

2
shown that £ = —2x (ﬂ) < 0 for x = 0, and as initially E(x) = E, the deduction for
dx dx 3

cosh v(x) follows in the same way as that in part (i). In part (iii), the choice of E(x) relies on

2
2 [(wcoshw + 2sinhw)dw so E(x) = (Z—:) + 2 (wsinhw + coshw) . Then

dE dw\ 2 . dw\2 e~ o 5
= -2 (d—‘::) (5coshx —4sinhx —3) = -2 (ﬁ) eT (e* —3)?, andinitially E(x) = >

The final result can be deduced as in the previous parts, with the additional consideration that
wsinhw = 0.

8. The sum is evaluated by recognising that it is a geometric progression with common ratio

e2im/m which may be summed using the standard formula and as 1 — e2™/™ « 0, the denominator



kd

is non-zero so the sum is zero. By simple trigonometry, s=d —rcosf.As r=ks, r = Tikcosd”
2kd

kd kd . . _
Treos T TR cos @) where 0 = a + (j — 1) m/n . Simplifying, [; = oo The

summation of the reciprocals of this expression is simply found using a double angle formula and

Thus l] =
then by expressing the trigonometric terms as the real part of the sum at the start of the question.

9. The volume is obtained as a volume of revolution V = f: m(R? — t?)dt which gives the
result. Similarly, Newton’s 2™ law gives % T R3p, X = Vpg —g 7 R3 p,g which simplifies to the
required result. Substituting x = %R when ¥ = 0 gives ps = % p . Substituting x = %R +y

yields Z R3y =g (—ZRzy + % Ry? + y3) , so for small y this approximates to SHM with period
T |10R
34 g

10. The initial result can be obtained in a number of different ways, but probably use of the
parallel axes rule is the simplest. Conserving angular momentum about P,

mu(a + x) = mv(a + x) +§ M(a? + 3x%?)w where v is the velocity of the particle after impact,

and w is the angular velocity of the beam after the impact, and by Newton’s experimental law of
impact (a + x)w — v = eu. Eliminating v between these two equations gives the quoted

. o . d L .
expression for w . Substituting m = 2M , for maximum w, ﬁ = 0. This gives a quadratic

. . . 1 5 . .
equation, with solutions x = —3a and x = -5 a. The latter is not feasible and the former can be

shown to generate a maximum which equates to the given result.

11. As the distance from the vertex to the centre of the equilateral triangle is a, the extended
(co(z B_a)
a
T

given result. Resolving vertically 3T sin @ = 3mg , and using the result for T, substituting 6 = .

length of each spring is ﬁ giving the tension in each as kmg which simplifies to the

’

wly o

and rationalising the denominator gives the required value for k. Conserving energy, when 6 =

2
( . )
7—a
COS3

gravitational potential energy is —3mga tan%, elastic potential energy is Ekmg =

2

3 1 o . . .

Ekmga( = — 1) , Whereas when 6 = z gravitational potential energy is —3mga tan%, elastic
3

cos— 6’

2
potential energy is ;kmga (ﬁ — 1) , and kinetic energy is % mV? hence giving V2.
6

12. PX,=1)=2,s0 E(X;) =2. There are n arrangements of the As and Bs, and the
1 n 1 n al'b!

number of arrangements with a B in the (k — 1) th place and an A in the k th place is %,
ab

n(n-1)

so P(X,=1) =
E(S) correctly.

for 2<k<n,and E(X;) = n(Z—L_)l) if i # 1. These combine to give



X1X; =1 only if the first letter is an A, the (j — 1) th letter is a B, and the j th letter is an A. This
(n-3)!

has probablllty D)

/wb' giving E(XlXj) correctly.

X;X; =1 onlyif the (i — 1) th letter is a B, and the i th letter is an A, the (j — 1) th letter is a B, and
, . . - (n—4)! a(a-1)b(b-1)
the j th letter is an A which has probability m/ ~p1 5© E(X X; ) DD (3} ’ and
a(a—1)b(b-1)
n(n-1)(n-2)(n-3)

thus Y7 2 E(XiX)=(m—-i-1) and so

a(a-1)b(b-1) . . .
(ZJ 2 E(XX;)) = 21 <(n —-i—1) n(n—l)(n—z)(n—3)> which yields the required result.

a(b+1) | a(a-1)b(b+1)

§? =TIy X% + TS T 412X X; s0 E(S?) = nn=1)

which can be used to

obtain Var(S) correctly.

13. integrating 0 < f(t) < M between limits of 0 and x gives the result of (a) (i), and
integrating the left hand side by parts yields part (ii). As kF(y)f(y) is a probability density function,

fol k F(y)f(y)dy = 1, which can be evaluated using the result of (a) (i) with 2g(x) = k and so
1 1 . N
k=2. EQ™) = [ y"2F()f(y)dy < [, y" 2Myf (y)dy = 2Muy 4y and using (a) (i) ,
1 1 2
E(Y™) = [y y"2F)f()dy = 1—n [; y"*(F()) dy , as
fly"‘l(F(y))zdy < fl y”‘lMy F(y)dy=M fol y™ F(y)dy , integration by parts gives
lyy F(y)dy—n+1—

nMm

1+ T

n+1,un+1 Part (iii) is derived from part (ii) by rearranging

vy — < 2My, 1 and making u,.1 the subject, then translating n+1 to n.



